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In this article a matrix method for the construction of spin multiplets (spin- 
configurations) is suggested in order to solve the multielectron problem for 
atoms and mulecules by means of configuration interaction. 

A simple graphical way is given to enumerate configurations and to break 
their set into subsets of configurations related to the given projection of the 
total spin of a system Sz. It is found that all matrices in the theory of spin 
multiplets are convex and in cases of two, three, and four electrons are broken 
into blocks of an order no higher than 3. 

The model of the solution of the multielectron SchrSdinger equation, in which 
the total spin of core electrons is zero, is considered. In this model the 
construction of linear combinations of configurations is reduced to the con- 
struction of those for but valence electrons. 
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Introduction 

The calculation of electron and electron-vibration spectra of molecules by the 
configuration interaction method leads to the problem of the construction of spin 
multiplets in the basis of one-electron functions. This problem is usually solved 
by means of permutation group representation theory, and is reduced to the 
construction of irreducible representations of the electron permutation group [ 1]. 
If these irreducible representations are known, the linear combinations of Slater 
determinants corresponding to the given total spin S of molecular electrons and 
its projections Sz may be built. 
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Distributing N electrons among M orbitals in accordance with the Pauli principle 
for the given total molecular spin an enormous number of configurations is 
obtained. The complete enumeration of  these configurations is quite a bulky 
problem and the use of  a large number of  configurations is impossible due to 
limitations on the computer  memory and on the time of calculations of matrix 
elements. 

At the same time, the formal exhaustive enumeration of configurations is not 
really necessary to construct molecular spectra. As a rule, molecular spectra 
correspond to transitions between levels of  multiplets with the total spin $ 2 -  < 
N / 2 ( N / 2 +  1), and spin projections Sz = O, +�89 +1. 

Thus, there is no necessity to observe the total spin projections with a magnitude 
larger than one. Moreover, it is not expedient to take into account configurations 
with low-lying unoccupied orbitals and high-lying occupied orbitals, if the differ- 
ence between them is comparable with the energy of  X-ray quanta, as they are 
unlikely to correspond to the physical phenomenon of an optical excitation of 
a molecule. Therefore, we can confine ourselves to the model of  the electron 
shell of  a molecule, consisting of  m low-lying doubly occupied orbitals and n 
singly occupied orbitals, so that N = 2m + n. 

Here, the problem of the construction of  linear combinations of  configurations 
(LCC) will be solved by the direct matrix method, which tending to the results, 
got traditionally by means of  permutation group representation theory. Thus, the 
independent method of  the same problem is suggested here, what in some cases 
makes it possible to regard the whole problem in the scope of  the matrix theory 
with the note that the permutation group representation theory can be realized 
by means of  matrices of  corresponding structure. 

All the results are corollary of symmetry properties of matrices considered in 
which permutational symmetry of the electron system is reflected. Due to this 
property, the possibility of partial diagonalization of the Hamiltonian matrix 
appears, dividing the total matrix into blocks, corresponding to the particular 
projections of  the total electron spin of a molecule. This very procedure makes 
the process of seeking for LCC particularly obvious. 

1. The total scheme for N singly occupied orbitals 

Consider a molecule with N electrons which occupy N different one-electron 
orbitals. The molecular Hamiltonian in the Born-Oppenheimer  approximation 
includes one-electron operators of the interaction between the electrons and the 
nuclei of  the molecule and of the Coulomb repulsion of the electrons. 

In the configuration interaction method (CI) a wave function is constructed in 
LCC form 

~ = E  CkOk (1) 
k 

where Ok is a Slater determinant, constructed from N spin-orhitals, and the 
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Ck-LCC coefficients have to be determined. Determinantal functions qbk are 
orthogonal in spin. By means of a variational procedure or Bubnov-Galerkin 
method, a system of algebraic equations is obtained for the coefficients Ck. The 
matrix elements of the basis functions ~k can be calculated in accordance with 
rules, given in [2]. 

Basis configurations ~k for the given set of N spin-orbitals correspond to 
energetically degenerated states of the molecule neglecting interactions of the 
electrons. Taking into consideration two directions of spin for separated electrons 
on an orbital, we come to 2 N configurations. As with the increase of  the number 
of electrons, the number of configurations is growing quite quickly, for illustration 
the electron configurations can be represented graphically like a tree, the method 
of propagation of its branches is clear from Fig. 1, given for the case N = 4. 

The graph, connected arrows in vertical directions, corresponds to the separate 
configuration. We shall call a tier a horizontal set of arrows on the tree. The 
position of an arrow on the given tier of the tree corresponds to a one-electron 
level, occupied by the electron with the given spin projection. Thus, all possible 
vertical graphs of the given tree reflect electron configurations of the system. 
Spins +�89 and -�89 are denoted by arrows, directed up and down respectively. The 
sum of spin projections for each graph is equal to the projection of the total spin 
of the system of the z-axis. Fig. 1 shows that the left and the right graphs give 
the only maximal magnitude of the projections of the total spin of  the system. 

These projections are the part of the spin multiplet with the maximal possible 
multiplicity. Thus, there is only one multiplet with the maximal total spin, the 
square of which is S 2 = N/2(N/2+ 1) for N orbitals, it is not difficult to calculate 
the numbers of the remaining multiplets, for which $2< N/2(N/2 + 1). So for 
the case N = 4, illustrated by Fig. 1, the following numbers of configurations, 
related respectively to projections of the total spin Sz = - 2 ,  -1 ,  0, 1, 2 are 
obtained: one configuration for Sz = - 2 ,  four configurations for Sz = - 1 ,  six 
configurations for Sz = 0, four configurations for Sz = 1, one configuration for 
Sz = 2. Note, that the set of configuration numbers coincides with the binomial 

N---4-- 

N--Z -.< 
Fig. 1. The tree of electron configurations 
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coefficients C ~ CI4, C4 2, C], C 4. There is the following distribution of configuration 
numbers among the total spin projections with S 2<- N / 2 ( N / 2  + 1) (the number 
of configurations is written in brackets near spin projection Sz) 

N cO N N 
- ~ ( N ) ,  -~ -+ l (C~v) ,  ---+2(C2u)'2 

N_ 2(C~_2) ' N N(C~)" ~ - -  I ( c N - ' ) ,  

It is clear that multiplicities of electron states for which the maximal magnitude 
of the projection of the total spin along the z-axis successively is given by 

N N  N 
2 2 1 , - ~ - 2 , . . . ,  

are equal to differences of consecutive binomial coefficients 

c ~  c k ,  - c ~  - 

so, in the case N = 4 : 1  multiplet with max Sz =2;  3 triplets with max Sz = 1, 2 
singlets with Sz = O. 

For the case of N electrons we have: 1 multiplet with max [Sz[ = N/2,  ( C ~ -  1) 
multiplets with max l S z l = N / 2 - 1 ,  ( c ~ - c ~ )  multiplets with max lSz[=  
N/2  - 2 and etc. The total number of multiplets is equal to the maximal binomial 
coefficients C~/2 for even N, and C~ N+1)/2 for odd N. The number of configura- 
tions with the minimal spin is equal to C~/2 - C~ N/2)-1 for even N, and C ~  -~)/2 - 
C ~  -~)/2-~ for odd N. Numbers C~  where k =  1 , 2 , . . . ,  N - 1 ,  determine the 
order of the energy matrix in the CI method, describing electron terms of the 
system with the total spin projecction. 

N 
Sz = - - - + k .  

2 

So, at N = 4 the secular equation of the 4-th order is obtained for Sz = -  1, the 
secular equation of 6-th o r d e r - a t  Sz = 0, one of 4-th o r d e r - a t  Sz = 1. After 
diagonalization of corresponding matrices one has to group the same eigenvalues 
and the LCC's related to them. By this method LCC will be gathered to multiplets 
with the given value S 2, that finishes the procedure of LCC calculation for electron 
states with the given values of the total spin values and its projection along the 
z-axis. So, the problem of electron multiplet construction is reduced to the 
diagonalization of CI matrices, taken for configurations with equal spin projec- 
tions Sz. Orders and the structure of these matrices are determined by the 
permutation symmetry of the electron system, and one can find them for the 
given basis of electron configurations q~k by means of the tree of electron 
configurations (Fig. 1). As the matrices mentioned possess a special structure, 
they should be considered in detail. For some particular cases the diagonalization 
of matrices of the CI method can be done analytically, therefore it is expedient 
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to dwell on these cases and to yield some formulas which are important for 
application. 

Considering all configurations with the same projection of the total spin Sz, we 
see that all graphs with the same numbers of arrows "up"  and "down"  should 
be chosen from the electron configuration tree. Denote molecular orbitals by ~,  
where i =  1 , . . . ,  N. 

In Fig. 1 horizontal dashes to the left show orbital energy levels. For the case 
N = 4 there are 16 electron configurations ~k for a set of four molecular orbitals 
q~l, ~o2, q~3, ~o4, as it is seen from Fig. 1. 

Now construct LCC (1) referring to the given projection of the total spin Sz. To 
calculate the energy E and the LCC coefficients Ck of the electron system by the 
CI method, there is the system of linear equations 

~k Ck(C~,ygC~kdr--Eg,k) = 0, l, k = 1 , . . . ,  N, (2) 

where ~ is the Hamiltonian of an atom or a molecule in the Born-Oppenheimer 
approximation, d~- is the volume element in the space of the coordinates of all 
electrons of the system, ~lk is the Kronecker symbol. 

The calculation of matrix elements of configurations is brought to the following 
result. Integrals of one-electron operators give the same contributions to diagonal 
matrix elements of configurations. 

Diagonal two-electron integrals (k = l) of configurations are equal to the sum of 
Coulomb two-electron integrals Ju, corresponding to all possible pairs of orbitals 

s j 
~o;, ~0j, i.e. J=Y~>~=t ~ without exchange integrals K~3,, in which orbitals ~,, q~j, 
are chosen in accordance with the rule: in k-th configuration all possible combina- 
tions of two orbitals in subsets of orbitals, occupied by electrons with equal spins 
are taken. Nondiagonal matrix elements (k ~ l) are equal to exchange integrals, 
taken with "minus" sign, - K  o between orbitals ~ and ~j, numbers i, j being 
found by means of  the rule: in k-th and / - th  configuration orbitals with the same 
direction of spin arrows are crossed out; the remaining two orbitals give the 
desired numbers i and j ;  if the number of such pairs is larger than 2, the exchange 
integral is equal to 0. All mentioned rules result from the spin orthogonality of 
spin-orbitals. 

Thus the total contribution of one-electron and two-electron Coulomb integrals 
to diagonal matrix elements are equal for all configurations and if they are 
subtracted from the energy E, the rest matrix keeps only exchange integrals, the 
sum of which in any row and any column of the matrix is the same. A matrix 
with this property is called convex. 

It is known, that any convex matrix possesses the eigenvalue, which is equal to 
the sum of  elements in a row, eigenvector X = {n -L/2, n -1/2 . . . .  , n - l / 2 } ,  where n 
is the matrix order. LCC for this eigenvalue is a component of the multiplet with 
the maximal spin value. 
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Thus, for any number  of  electrons the multiplet with maximal spin value can be 
constructed in an obvious way, without any matrix diagonalization. 

All matrices of  CI  method for the given N electron configurations tree keep the 
same set of  N ( N -  1)/2 exchange integrals. In Sect. 3 cases N = 2, 3 and 4 will be 
discussed in detail and LCC will be found, which form all possible multiplets. 

2. The  c lo sed  core  m o d e l  

Consider the following model of  the electron shell of  an atom or a molecule. 
Regard n orbitals from which m low-lying orbitals ~ are occupied by pairs of  
electrons with opposite spins, and n - m high-lying orbitals are occupied by one 
electron. As the m low-lying orbitals are doubly degenerate, spins of  the orbital 
electrons cannot have the same direction due to the Pauli principle so we can 
consider the closed core. 

Thus, LCC of the closed core should be constructed not from the whole set of  
configurations with Sz  = O, but from those which correspond to the sum projection 
Sz  = 0 for m low-lying orbitals ~ .  Moreover,  the model in which the total spin 
of  the core is 0, is realistic. 

LCC, corresponding to the zero total spin of  the core, can be written in an obvious 
form. 

Now again turn to Fig. 1. For the core with N = 4, one has ~t = ~2 and ~03 = ~4. 
So basis configurations 06, 07, O10, O~1 should be chosen. I f  LCCs are constructed 
in the form 

1 1 
~tFI = ~22 (lff~6 -- 1ff~7)' ~If2 = ~ ((I) 10 -- Iff~l 1) (3)  

they shall correspond to zero total spin of  pair  of  electrons on q~3 = ~04. 

It is obvious that linear combination o f * l  and *2  will not change the total spin 
of  this pair of  electrons. Then for the LCC 

1 
* = ~  ( ' 1 - * 2 )  (4) 

one obtains zero total spin for the remaining pair of electrons on orbitals q~ = ~o2. 

So, it is found the desired LCC 

* = 2 - ] ( 0 6 - 0 7 - 0 1 0 q - 0 1 1 )  (5) 

which corresponds to S 2= Sz  = 0. 

For 2m core electrons, the LCC with S 2 = Sz  = 0 can be constructed, if one takes 
advantage of  the following tree of  electron configurations, given by Fig. 2. 

Here the tree tiers mean, as usual, electron orbitals, however, now each orbital 
is occupied by two electrons with opposite spin. 
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m=3 

m=2 

'm,=t 

Fig. 2. The tree of electron configurations of a closed core 
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We begin to construct the LCC by combining configurations of  the upper  tier. 
For the pair of  neighbor graphs, beginning, e.g. with the last pair on the left, we 
take the differences between configurations ~ 1 - ~ 2 ,  qb3- qb4 . . . .  , qb2m_l- ~2,o. In 
this case the zero total spin for the pair of  electrons, occupying the m-th orbital, 
is obtained. Then at the (m - 1)-th tier of the tree, we take the differences of  the 
combinations which correspond to the neighbour graphs. We arrive at the following 
LCC: ~E) 1 - - ( I ) 2 - - ( ( I ) 3 -  ( I )4 ) ,  (I)5 - -  1ff~)6-- ((I)7 - -  ( I )8 ) ,  . . . , ( I ) 2 m _ 3 -  (I)2m 2 - - ( ( I ) 2 m  1 -  ( I )2m) .  

This method is continued to the lower tier of  the tree, the last action will be the 
substraction of the LCC corresponding to the right half of  the tree from the LCC 
corresponding to the left half of the tree, so the LCC with zero total spin of the 
core will be obtained. 

The general alternation of signs " + "  and " - "  before ~ ,  ~ 2 , - . . ,  ~2 ~ can be 
obtained from the LCC, calculated consequently for m = 1, 2 , . . . .  Note, that it 
is enough to find signs for the left (or right) half  of  the tree illustrated by Fig. 
2. Normalized coefficients obtained in the LCC should be equal to 2 - ' / 2 .  

Note, that other LCCs of the core, corresponding to S 2 = Sz = 0 do not exist. 
Really, qb~ +qb 2 = 0 as orbitals for the pair of  electrtons are the same and their 
antisymmetrical combinations are 0. 

LCC for all electrons of  the system, including both the core and the valent ones 
should be constructed beginning with LCC, obtained just now, for the zero total 
core spin. So, the total spin of  the system will be determined by the valence 
electrons and for their number  being no more than 4, the problem of LCC 
calculation corresponding to the given total spin, with the magnitude of maximal 
projection no more than 2, can be solved analytically. 

The next problem consists in combining the LCC for given S 2 and Sz, correspond- 
ing to the system energies, close enough to the energy of this state, that should 
be calculated. This problem is reduced to the numerical solution of a secular 
equation like (2), in which matrix elements are calculated not from configurations 
qbl, but from (LCC)i for the given S 2 and Sz. Call LCC for the given S 2 and Sz 
by spin-configuration (SC). Then, a wave function of an atom or a molecule, 
constructed by the method mentioned above is the lilnear combination of spin- 
configurations (LCSC). A LCSC function is t ransformed by a representation of 
S 2 and Sz. 
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Solving the equation of the method of LCSC numerically, we get a series of 
terms, describing the states of  a system with definite values of S 2 and Sz. 
Transitions between terms can be classified in series in which AS = 0, + 1 and etc. 

Taking into consideration the system space symmetry, one can classify both terms 
and spectra over the irreducible representations of the corresponding group of 
symmetry, as a result the matrix of the LCSC method for defined S 2 and Sz will 
be separated into blocks belonging to the types of the representations of the 
symmetry group. 

3. The calculation of  SC for 2, 3 and 4 electrons 

N = 2. This case is simple, however, it is expedient to begin with the consideration 
of this very case of two electron, occupying different orbitals. 

The electron configurations are illustrated by Fig. 3. Configurations ~1 and qb2 
are components of multiplets for spin S = 1, with projections Sz  = + 1 and Sz  = - 1  

correspondingly. Energies of these configurations are degenerate and equal to 
E + J12 - K12, where E is the configuration energy without taking electron-electron 
interaction into account, Jl2 is the Coulomb two-electron integral, K,2 the two- 
electron exchange integral. The remaining configurations qb3 and qb4 lead to a 
matrix of  the second order like 

E + JI2 KI2 ] 

K12 E + J12J (6) 

which has eigenvalues E +J12-K12  and E +Jl2+K12 and eigenvectors (2 -1/2, 
2 -1/2) and (2 -1/2, --2-1/2) ,  correspondingly. These two LCCs correspond to 
energies E + J~2- K~2 and E + J~2+ Kl2. Thus, the first eigenvalue belongs to the 
triplet and the second one should belong to the singlet, which both have the 
same spin projections Sz  = O. 

El = E + JI 2 - K12, ~ I = ~1; Sz  = 1; 

E 2 = E -+- J12- K12, xi*2 = dP2; Sz  = - 1  ; 

E 3 = E + J 1 2 - K I 2  , ~I-t3 = 2 -1 /2 ( ( I%-~ ' -  ( I)4) ,  S z =0"~ 

E 4 = E q- J12 -{- Kl2, xi*4 = 2-1/2((I)3 --  ( I)4) ,  S z  = O. 

% 

q~ 

cP2 % 

t t $ 
Fig. 3. Electron configurations for 2 elec- 

~ Z "  ~ - 4  O 0 trons 
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~t q~ cPa cD~ cp~ cp 6 cp~ @B 

q' 1' 1' t 

: 2 2 2 Z 
Fig, 4. Electron configurations for 3 electrons 

The first three rows correspond to the components of the spin triplet, and the 
last row corresponds to the spin singlet. As K12> 0 hence Esing> Etr and Hund's 
rule is valid, which says, that electron states with greater total spin have less 
energy than states with less total spin. 

Hund's rule can be broken if several singlet LCC's are combined. 

N = 3. Now take the tree of configurations up to the third tier of  arrows. 

Fig. 4 shows that for the system of three electrons there are 1 quartet and 2 doublets. 

While constructing LCC's we arrive at two secular equations of third order with 
identical matrices of the following type 

F J - K , 2 - K 2 3  - K l 3 ]  F J  0 0 7  FK,2 K23 K,31 
a=J -K23 J-Kl3 -K12/= [O 0JJ  -/K23 K13 K12 / 

I_-K,3 -K12 J-K23J 0 [_Kl3 Kt2 K23J 
(8) 

where J = J12 + J13 q- J23. 

The special structure of this matrix makes it possible to find its eigenvalues in 
analytical form: 

E 1 = J -  K12- K23- KI3 

E 2 = J - ( K  2~2+ K 213 + K23 - Kt2K13 - Ki2K2s - g13K23) 1/2 (9) 

E3 = jq_ 2 2 2 (KI2+ K13+ Ke3-K12KI3 KI2K23-KI3K23) 1/2. 

The corresponding eigenvectors are C1 = {3 -1/2, 3 -1/2, 3-1/2}; 

C2 = {2"6-J/eel ; -6-1/2el + 2-1/2e2; -6-1/2el - 2-1/2e2}, 

C3 = {2,6-1/2e3; -6-1/2e3+ 2-1/2e4; -6-1/2e3 - 2-1/2e4} 
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where 

el = (t + A 1/2)(U2+ (t + A 1/2)2)-1/2;  

e 3 = (t - A 1/2)( U2+ (t - A 1/2)2)-1/2; 

Boris K. Novosadov,  Lev A. Gribov 

e2 = U( U2 + ( t +  h 1/2)2)-~/2; 

e 4 = U( U2+ (t - - A  1/2)2)-1/2;  

t= K12-O.5(K23+ K13); U=O.5.3t/2(K23-Kt3), 

2 2 + K223 _ K 1 2 K I 3  _ K t 2 K 2 3  _ K13K23" A = K 1 2 + K 1 3  

The wave functions --i~1/2) for the projection of the total spin Sz =�89 can be 
constructed as the scalar product  of  the vectors Ci with the vector q~ = {q~2, ~3, ~4}, 
i.e. ~ I  1/2)= C~.~, i =  1, 2, 3. The analogous result is obtained for projections of  
the total spin Sz = -�89 after replacements ~2 ~ ~7, ~3 ~ q% and ~4 ~ ~s- 

Functions like ~• together with the configurations ~1 and q~s belong to the 
f~lt(1/2) ~11(--1/2)~ f~Tt(l/2) 1ir(--l/2)~ quartet with the total spin S = 3/2. Functions like l~2  , "*'2 J, )_'r3 , ur3 J 

are two doublets with the total spin S = 1/2. Thus, all SC's for the case of  three 
electrons are found. 

N = 4 .  By means of the tree, illustrated by Fig. 1, one obtains the following 
configurations for 4 electrons, shown in Fig. 5 (the indices of  qb's do not coincide 
with those in Fig. 1). There are 1 quantet, 3 triplets, 2 singlets. The configurations 
@1 and ~16  belong to the quintet. For total spin projections Sz = 1 and Sz = -1  
we arrive at the identical matrices of  4-th order 

a4(s Z = 1, - 1 )  

[-J - Kl2 - KI3 -- K23 -K34 -KE4 -K14 "~ 
= |  -K34  J - K 1 2 - K I 4 - K 2 4  -K23 - K I 3  

/ 

J / 
__K24 -K23 J - KI3 - K14 - -  K34 -K12 

L - K I 4  - K I 3  - K I 2  J - K23 - K24 - -  K34 

(11) 

4 
where J =  ~.j>i=l Jo. 

% % % % % % ~, % % % q~,t cp,~%%%s%6 

t t  $ t t  t t  t 

S~: Z I O -I -Z 

Fig. 5. Electron configurations for 4 electrons 
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The rows and columns of  the matrix (11) correspond to configurations qb2, qb3, 
~4, ~5 or qb~2, qb~3 , ~ 4 ,  ~ 5 .  By means of the orthogonal transformation 

C = !  l 1 -1  
4 - ,  - ,  

- 1  l 

(12) 

the matrix (1 l) is reduced to the block type 

l 
J - K 0 0 0 1 

(~74A4 C4 _- 0 J - KI2 -  K34 K24- g13 K I4 -  K23 
0 K24- K13 J -  K23- KI4 K34- K12 / 

0 Kl4 - K23 K34 - -  g 1 2  J - K13 - K24.J 

(13) 

4 
where K =~j>~=t K~j. 

Eigenvalue ( J - K )  belongs to the quintet, corresponding eigenvector being {�89 

After diagonalization of the rest block of 3-rd order of the matrix (13) we shall 
obtain eigenvectors, related to 3 triplets with different energies. 

To calculate LCC's corresponding to Sz = 0, we have to diagonalize the matrix 
of 6-th order 

I J  - K12 - K34 -K23 -K24 -K13 -K14 0 
-K23 J - K13 - K24 -K34 -Kl2 0 -Kl4 1 

A6(S  Z = O) = - K 2 4  -K34 J -  Kl4- K23 0 -KI2 -g13 [ 
/ 

-K13 -K12 0 J - K 1 4 - K 2 3  -K34 -K24 /" 
-KI4 0 -KI2 -K34 J -  Kl3 - K24 -K23 1 

0 -K14 -Kt3 -K24 -K23 J - K12 - K34_ l 

(14) 

The rows and the columns of the matrix (4) correspond to configurations (I)6, (I)7, 
~8, qb9, ~1o, ~11. 

By means of an orthogonal transformation of type 

= 

-1 0 0 1 0 0- 

0 1 0 0 0 1 

0 0 1 0 -1  0 

0 0 1 0 1 0 

0 1 0 0 0 -1  

1 0 0 - 1  0 0 

(15) 
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the matrix (14) is reduced to the block type: 

1~6A6 C6 = 

J - g12 - K34 -K23 - g14 -K24 - KI3 
-K23 - KI4 J - KI3 - K24 -/'(34 - K12 
-K24- K13 -K34- KI2 J -  Kl4- K23 

J -  Kl2-  K34 K24- K13 

K 2 4  - KI3 J - KI4 - K23 
g14- K23 K34-KI2 

Kl4- K23 [ 
/ 

K34- g12 / 
J -  Kla ~ K24 A 

(16) 

The matrix (1 6) is broken up into two blocks of  the third order. The lower block 
coincides with the lower block of  the matrix (13) and hence describes the com- 
ponents of  3 triplets, corresponding to the projection of the total spin Sz  = O. 

The upper  block of the matrix (16) has the structure of  the matrix (8), therefore 
it can be diagonalized by an analogous method,  and formulas like (9), (10) can 
be obtained for eigenvalues and eigenvectors. 

4 
Eigenvalue E1 = J - Y , j > i = l  Kij and eigenvector C~ ={3 -1/~, 3 -1/2, 3 -1/2} are a 
quintet component  for which Sz  = 0. The remaining two SC's of  this block describe 
2 singlets with S 2= 0 and Sz  = O. 

In the arbitrary case of  N electrons it is also possible to reduce secular equations 
to blocks relating to the definite projections of  the total spin Sz. However, the 
least order of  blocks is N -  1. A further simplification of  the structure of  the rest 
matrices of  large orders can be obtained neglecting small exchange integrals. 
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